Наша Газета

nashagazeta.ch

Опубликовано на Швейцария: новости на русском языке (https://nashagazeta.ch)

Антон Иванов: по следам жизни на Mapce | Anton Ivanov: sur les traces de la vie sur Mars

Author: Ольга Юркина, <u>Лозанна</u>, 13.04.2011.

Антон Иванов, выпускник Московского инженерно-физического института, кандидат наук Калифорнийского Технологического университета и научный сотрудник Федеральной политехнической школы Лозанны (NashaGazeta.ch) Вчера Россия отмечала День космонавтики, непосредственное отношение к которому имеет наш сегодняшний гость, научный сотрудник Федеральной политехнической школы Лозанны, один из участников программы НАСА по исследованию «красной планеты» и участник проекта "Швейцарская Космическая Обсерватория".

A l'occasion de la Journée des Cosmonautes célébrée en Russie le 12 avril, notre invité

d'aujourd'hui est très proche de l'espace: collaborateur scientifique de l'École polytechnique fédérale de Lausanne, consultant du programme "Mars Exploration" de la NASA et participant du projet "Swiss Space Observatory".

Anton Ivanov: sur les traces de la vie sur Mars

В начале февраля швейцарские агентства и «Наша Газета.ch» опубликовали материал о том, что антенны, спроектированные в Федеральной политехнической школе Лозанны EPFL, будут использоваться на новых наноспутниках Европейского космического агентства. К большой радости редакции среди инженеров, участвовавших в проекте, оказался и «наш» человек, российский ученый Антон Иванов, к которому мы не замедлили обратиться за комментариями. Антон не скрыл своего удивления: по его мнению, рано еще говорить об успехе, антенны EPFL прошли только один из этапов конкурса, объявленного EKA, и у них есть серьезные конкуренты. Что касается его собственных заслуг в разработке, то они, собственно, «скромные», но рассказать можно, если это покажется интересным... После таких слов у редакции не осталось сомнений: «наш» человек, скрывающий свои многочисленные таланты из скромности. С удовольствием знакомим с ним читателей.

HГ: Антон, давайте сначала разберемся с антеннами. Правда ли, что Европейское космическое агентство собирается сотрудничать с EPFL?

×

Антон Иванов с прототипом Swiss Cube, первого швейцарского спутника на орбите (NashaGazeta.ch)

Антон Иванов: Не совсем... Для начала надо объяснить, как устроены конкурсы ЕКА. У них есть программы по финансированию новых технологий на средства странчленов. Каждая страна, в зависимости от ее размеров и возможностей, делает взнос, а взамен получает проекты. Так работает и Швейцария. Существует несколько типов программ, от развития инновационных технологий до строительства спутников по уже готовым проектам. Малые антенны нового поколения относятся к первой категории: сначала нужно продумать техническое обеспечение, hardware, затем испытать прототип в лабораторных условиях. Затем только можно построить модель и проверить ее в адекватных условиях. В общем, на разработку и испытания понадобится 5-10 лет. Для ЕКА мы сначала разработали компьютерную модель антенны, а потом макет, то есть лабораторную модель. Испытаний в реальных условиях они пока еще не проходили. Мы завершили только первый этап конкурса, но продолжаем работать.

Чем конкретно занимался в разработке этих антенн Центр космических технологий, Space Center EPFL, где Вы работаете?

Антон Иванов: Мы сотрудничали с несколькими исследовательскими центрами, например, Лабораторией электромагнитных технологий и акустики LEMA, в которой рассчитывались параметры для малых антенн. Space Center разрабатывал технические требования к модели, необходимой ЕКА. Мы проводили компьютерное тестирование и определяли характеристики, необходимые будущему устройству. На самом деле, чтобы выявить технологические требования, для каждого проекта нужен сценарий. Как один из сценариев я предложил полет на Марс.

Марс Вы, конечно, вспомнили не случайно, а по старой памяти... Если не

ошибаюсь, именно исследованиями красной планеты Вы занимались в США?

Антон Иванов: В частности. Я много лет работал с НАСА в программе Mars Exploration и до сих пор остаюсь научным консультантом одного из проектов. Антенну, разработанную в EPFL, можно было бы использовать в аппаратах для исследования Марса и других планет.

Небольшая справка для читателей: вопрос, есть ли жизнь на Марсе, на самом деле далеко не глупый и не наивный, а один из самых захватывающих в исследованиях космического пространства с того самого момента, как в 1965 году были получены первые снимки «красной планеты», позволившие рассмотреть детали поверхности. Цель программы HACA Mars Exploration – выяснить, действительно ли на Марсе когдато текла вода, о чем свидетельствуют оставшиеся «русла» на поверхности планеты, и могла ли там при определенных условиях зародиться жизнь, точно так же, как на Земле. Если же она зародилась, что произошло потом и воспрепятствовало ее развитию?

×

Марсоход Spirit на "красной планете" (NASA/JPL/Cornell University)
Найти ответы на все эти вопросы помогло бы детальное исследование грунта с красной планеты, образцы которого сейчас собирают на ее пустынных пространствах два аппарата-марсохода, Mars Exploration Rovers, под названиями Spirit и Opportunity. После множества неудачных попыток, НАСА удалось посадить роботов на Марс неповрежденными, чтобы они смогли выполнять свою задачу. Но самой большой проблемой будет возвращение собранных образцов на Землю...

Антон, объясните далеким от Марса землянам, в чем, собственно, сложность? С Луны же мы возвращались?

Антон Иванов: Принципиальных технических сложностей нет. Советские аппараты привозили образцы материи из космоса еще в начале 70-х годов. Не говоря уже об американской программе исследования Луны, в рамках которой астронавты доставили на Землю большое количество образцов поверхности. Основная проблема возвращения грунта с Марса в том, что он больше Луны, следовательно и притяжение там больше. Так что нужны аппараты гораздо мощнее, чтобы с него оторваться и улететь. Поэтому освоение Марса гораздо сложнее по сравнению с лунной программой. Проект возвращения образцов грунта разработан, но его воплощение откладывается по финансовым причинам.

Антон, по Вашему мнению, есть ли жизнь на Марсе?

×

Поверхность Марса, испещренная потоками воды (NASA/JPL-Caltech)

Антон Иванов: Что касается жизни на Марсе... Сейчас он холодный и сухой, на его поверхности и в почве есть лед, но нет воды. Можно найти доказательства того, что жидкая вода когда-то текла на этой планете. На ее поверхности до сих пор видны следы, похожие на дельты рек. Еще одно подтверждение гипотезы – лед, оставшийся на поверхности и в грунте. Можно предположить, что когда-то Марс был более теплым и на нем существовали условия, похожие на земные, то есть благоприятные для зарождения жизни. Скорее всего, это был довольно краткий период катастроф, наводнений. Но в какой-то момент там действительно могла начать зарождаться

жизнь. Вопрос - почему этого не произошло. А если произошло, почему прервалось. В результате каких климатических или геофизических изменений Марс стал таким, каким мы теперь его видим, как потерял свою атмосферу. Это мы изучаем на основании данных, сохранившихся в полярных шапках «красной планеты».

История Марса, будь она открыта, смогла бы прояснить происхождение и развитие Земли?

Антон Иванов: В отношениях Земли с Марсом возможны два сценария. Земля существует уже более 4 миллиардов лет. В так называемый период «поздней тяжелой бомбардировки» в Солнечной системе хаотично перемещались довольно крупные космические тела, которые сталкивались между собой и с уже сформировавшимися планетами. Считается, что так образовались кратеры, которые мы видим на Марсе.

Во время всех этих ударных процессов, необыкновенно мощных, в Марс могло врезаться какое-то инородное тело – так, что от удара в космос был выпущен небольшой метеорит, который, вполне вероятно, мог достигнуть Земли. Теоретически это вполне возможно: в Антарктиде были найдены остатки марсианских метеоритов. Гипотетически, будь в этом отрвавшемся от Марса кусочке органические бактерии, они перенесли бы космическое путешествие и, попав на Землю, могли бы развиться и... занести жизнь на нашу планету.

Другими словами, мы можем быть потомками или родственниками гипотетических марсиан?

Антон Иванов: Или наоборот. Может быть, жизнь одновременно зародилась на Марсе и Земле, но потом с Марсом что-то случилось. Надо понять, что именно. Для зарождения жизни необходимо три условия: жидкая вода, тепло и органические молекулы. Да что там Марс. Сейчас уже заглядывают в другие галактики и ищут там планеты, похожие на Землю, на которых могли бы существовать живые организмы. Уже найдено несколько таких экзопланет (за пределами Солнечной Системы). Условия на них сходные с Землей, они удалены от своего Солнца на правильное расстояние, чтобы было не слишком жарко, или холодно, и существовали условия для наличия жидкой воды на поверхности.

Экзопланетами сейчас интресуются во многих странах, и Швейцария - одна из самых активных наблюдательниц далеких галактик. Вы в EPFL относительно недавно, но уже участвуете в большом проекте по созданию новой космической обсерватории...

Антон Иванов: Швейцария – страна маленькая, и у нее относительно небольшой бюджет на освоение космического пространства. Зато именно здесь, в Женевской обсерватории, 15 лет назад открыли экзопланеты и до сих пор лидируют в их изучении. Еще один ведущий институт находится в Берне и занимается разработкой инструментов и аппаратуры для исследования космоса. Космическая обсерватория – совместный проект двух этих лабораторий. При чем здесь Space Centre EPFL? Мы разрабатываем эскизный проект этой обсерватории.

Звучит внушительно. Швейцарская обсерватория будет какой-то особенной?

Антон Иванов: В космосе сейчас находится несколько космических обсерваторий, но они изучают, в основном, широкие сегменты неба, чтобы понять, где вообще находятся экзопланеты. Есть небольшой канадский спутник MOST. Собственно, его успехи и доказывают, что наша миссия вполне возможна, даже если швейцарский спутник будет небольшим, по сравнению, например, с орбитальными обсерваториями "Кеплер" или "Коро". Наша идея – создать телескоп, который можно было бы направлять туда, куда мы хотим, и дольше наблюдать за одной планетой или звездой. Цель обсерватории – не открывать новые небесные тела (хотя и это не исключено в процессе), а охарактеризовать уже обнаруженные системы, наблюдая за ними длительное время.

×

Антенна на крыше здания EPFL для связи со Swiss Cube (NashaGazeta.ch) Сейчас проект находится на начальной стадии и мы решаем технические задачи. Например, как охлаждать корпус спутника, чтобы телескоп, его детектор и зеркало не перегревались от солнечных панелей или от других сильно нагревающихся частей. Иначе полученное изображение будет искажено. Еще одна проблема - как стабилизировать спутник, чтобы он не вращался, как наш «кубик».

Наноспутник Swiss Cube - первый швейцарский спутник на орбите. Аппарат действительно представляет собой куб с ребром 10 см и весит всего 820 граммов. В спутник встроен маленький телескоп, работающий в инфракрасном излучении, а его миссией является наблюдение за феноменом свечения атмосферы (Airglow). Однако после запуска в сентябре 2009 года у маленького кубика начались проблемы: после выведения на орбиту вращение спутника значительно превысило расчетные параметры. Для начала выполнения научной программы пришлось ждать более чем 500 дней - пока вращение не замедлится естественным образом. Сейчас швейцарский кубик чувствует себя прекрасно и присылает на Землю свои первые изображения. (Мы расскажем об этом отдельно в ближайшее время).

×

Антон Иванов в центре связи со швейцарским "кубиком" (NashaGazeta.ch)

Антон, до того как приехать в Швейцарию, Вы много работали, в России и

США. Какая путеводная, или скорее «спутниководная» звезда привела Вас в

Лозанну?

Антон Иванов: На самом деле, мне просто очень повезло. В EPFL мне предложили возглавить лабораторию по разработке моделей для нано- и микроспутников. Мне вообще часто везло, но, к сожалению, я не всегда это использовал... Предложение очень понравилось, тем более что я давно хотел преподавать в университете. И Швейцария привлекала – горами. Параллельно я до сих пор остаюсь сотрудником в научной группе миссии на Марс, по изучению полярных шапок, тех самых.

Преподавание Антон совмещает с научными совещаниями: в Берне по поводу космической обсерватории, в США – в рамках миссии на Марс. Несмотря на это, он регулярно навещает центр управления полетами швейцарского кубика – небольшую комнату в Space Center, оборудованную для выхода на связь с космосом. Каждый раз, когда кубик отвечает, Антон и его коллеги искренне радуются. Малыш-спутник, если и не самый грандиозный по масштабам, то уж точно самый душевный и трогательный проект Центра космических технологий EPFL, лишний раз подтверждающий народную мудрость: маленький, да удаленький...

федеральная политехническая школа лозанны

антон иванов

российские ученые в швейцарии

миссия на марс

наса исследования марса

марсоход

Статьи по теме

SwissCube уходит в космос

На орбите появился швейцарский «кубик»

EPFL выходит в открытый космос

Экзопланеты засняты швейцарским объективом

Планеты наоборот

«Зеленых человечков нет!»

Source URL: https://dev.nashagazeta.ch/node/11460